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This paper presents a consequence of the systematic approach to identify the aerodynamic 

parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control 

system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is 

applied for lateral/directional excitation. Optimal time step for excitation is sought to provide 

the broad input bandwidth. A fully automated programmed flight test method provides high- 

quality flight data for system identification using the flight control computer with longitudinal 

and lateral/directional autopilots, which enable the separation of each motion during the flight 

test. The accuracy of the longitudinal system identification is improved by an additional use of 

the closed-loop flight test data. A constrained optimization scheme is applied to estimate the 

aerodynamic coefficients that best describe the time response of the vehicle. An appropriate 

weighting function is introduced to balance the flight modes. As a result, concurrent system 

models are obtained for a wide envelope of both longitudinal and lateral/directional flight 

maneuvers while maintaining the physical meanings of each parameter. 

Key Words:System Identification, Unmanned Aerial Vehicle, Automatic Flight Control Sys- 

tem, Flight Control Computer, Closed-Loop Flight Test Data 

1. Introduction 

Modeling of an aircraft forms the basis for 

stability and control analysis. Accurate modeling 

precedes the identification of the flight charac- 

teristics of the developed aircraft. Basic modeling 

of an aircraft is obtained at the configuration 

design stage (Hoak, 1972), which does not reflect 

all the details of the real configuration. This 

modeling is sometimes quite different from the 
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real one because the modeling method is largely 

based on convention or simple experiments. It 

generally depends on system identification based 

on flight test data to overcome the discrepancy 

and obtain an accurate model. 

System identification was initiated in 1795 

when Gauss developed the least square method 

to estimate the orbits of planets (Hamel and Jate- 

gaonkar, 1996). It was freque~atly used as a tool 

to verify and change the mathematical model of 

various aerospace systems from flight tests. Lon- 

gitudinal oscillation method, pulse method and 

analogue matching were developed in the early 

twentieth century. Estimation theories based on 

stochastic systems were introduced in the 1960s : 

output error method, and filter error method, 

frequency domain identification method were 
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among them (lliff, 1989; Jategaonkar and Plae- 

tschke, 1989 ; Maine and Murray, 1988 : Song and 

Hwang, 1998). Recently, closed-loop identifica- 

tion for statically unstable aircraft and real-time 

system identification with a controller recon- 

figuration scheme were pursued (Kuo et al., 

2000; Morelli, 1996, 2000; Song et al., 2002). 

System identification from flight tests requires 

a lot of flight data in the whole flight envelope 

and its results should be consistent with these 

flight data. In this respect, identification based on 

aerodynamic parameters is considered better than 

that based on system and input matrices. Mor- 

eover, the aerodynamic parameters to be identi- 

fied should be constrained within a certain rea- 

sonable range. Identification is a kind of opti- 

mization in either a deterministic or stochastic 

environment that consists of (i) selection of per- 

formance index, and (ii) optimization that mi- 

nimizes(maximizes) the selected performance in- 

dex. It is also a kind of inverse problem that seeks 

the modeling from the input-output relationship 

and the desired modeling can be obtained from as 

many known test data and parameters as possible. 

That is, the identified modeling reflects the in- 

formation imposed by the researcher. Therefore, 

the researcher should apply a consistent flight test 

method that maximizes the identifiability and uses 

as much information from either physical insight 

or wind tunnel tests to minimize the role of the 

identification algorithm itself. 

This paper presents a consequence of the sys- 

tematic approach to identify the aerodynamic 

parameters of the developed unmanned aerial 

vehicle equipped with an automatic flight control 

system. A brief specification of the unmanned 

aerial vehicle is shown in Table 1. Programmed 

actuating inputs that are almost equivalent to 

the designed trajectories guarantee the highest in- 

put frequency attainable. Interference effects bet- 

ween longitudinal and lateral/directional modes 

should be minimized for accurate system identifi- 

cation, and the desired flight mode was excited 

while the other flight mode was regulated via 

autopilot engagement. An enhanced airborne data 

acquisition system (ADAS) made it possible to 

get the high-quality flight data (Kim et al., 2001). 

Copyright (C) 2003 NuriMedia Co., Ltd. 

Table 1 Specification of the UAV 

Description Value [unit] 

Length 4.6 Im] 

Span 6.4 [m] 

Weight 290 [kg] 

Operational 
0-0 [km] 

Altitude 

Range 00 [km] 

Endurance 0 [hrs] 

The flight test data were carefully acquired by 

considering consistency and reproducibility. The 

flight data were effectively used for the system 

identification of the unmanned aerial vehicle. A 

constrained parameter optimization algorithm was 

used to find the system model for both longitu- 

dinal and lateral/directional flight modes for a 

large flight speed envelope. 

2. Flight Test Strategy 

Dynamic response of an aircraft is largely de- 

termined by the actuation of control surfaces/ 

propulsion. Therefore, the actuation should be 

designed in order to excite a wide bandwidth. 

There has been much research in this area : iden- 

tifiability was adopted as a performance index 

and was optimized for the realization of the 

actuation input. As a result, single pulse, doublet 

and 3-2-1-1 multistep input were designed and 

verified via flight tests. Especially, a 3-2-1-1 

multistep input was proved efficient with a rela- 

tively simple design efl'ort (Klein, 1989 ; Morelli 

and Klein, 1990; Morelli, 1997; Schafer, 1984). 

Fig. I shows the configurations and power spec- 

tral densities of various actuation inputs with 

respect to the frequency in Hz. 

In this research, a variety of flight tests were 

performed for system identification taking the 

advantage of a remotely commanded, automatic- 

ally controlled UAV. In the longitudinal open- 

loop flight test, a flight motion was excited by 

elevator while the throttle was fixed to trim- 

throttle. In order to decouple the longitudinal 

mode from the lateral/directional mode, the la- 

teral/directional autopilot was engaged to keep 
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the wing level. Pre-opt imized  3 - 2 - 1 - I  input was 

automatical ly  excited to guarantee the desired 

frequency bandwidth (Lee et al., 2001). Several 

reciprocated flight events were performed within 

a broad flight envelope to accumulate reliable 

flight data. The flight data were stored in A D A S  

with a sample rate of  50 Hz. Such a systematic 

flight test method contr ibuted to acquir ing high 

quality flight test data. Longi tudinal  flight tests 

were performed at the alti tude of  around 1000 m 

and 500 m at various airspeeds, which are sum- 

marized in Table  2. 

On the other hand, addi t ional  flight data were 

obtained from the c losed- loop  pitch test. The 

pitch control  loop has feedbacks of  the pitch 

ang le /angu la r  rate from the integrated navigat ion 

unit ( INU) and actuates the elevator  using the 

assigned feedback gains. In most U A V s  that do 

not adopt  automatic  t ake-of f  and landing system 

(ATLS) ,  external pilots control  the air vehicle in 

the t ake-of f  and landing phase. Therefore,  the 

pitch control  loop requires high bandwidth  to 

increase the recovery rate of  the vehicle in acci- 

dental situations. Figure  2 shows a block d iagram 

of  the pitch control  loop. The pitch control  loop 

consists of  two individual  feedback paths : (i) the 

pitch tracking error between the pitch command 

and pitch response, and (ii) the pitch rate. A wash-  

out is adopted to remove the nonzero pitch rate 

during the steady turn. The  pitch loop autopi lot  

computes  the required elevator command.  Actual  

control  surface deflection is an outcome of the 

servo dynamics,  which can be approximated by a 

Table 2 Open-loop flight test results 

r Trim 
No ALT* i IAS** Throttle Weight 

(m) I; (kph) (o/6o) (Kg) 

1 1020 128.7 31.6 265.22 

2 1004 150.3 43.6 264.35 

3 1010 149.6 41.2 263.88 

4 534 129.1 26.0 263.40 

5 530 128.4 26.8 263.04 

6 518 162.6 42.8 262.25 

Roll is regulated by autopilot 

* ALT : Flight Test Altitude 
* * IAS : Indicated Airspeed 

Step Fen 

Iongnudlna 

Fig. 2 

,C23 

Pitch loop block diagram 

second order transfer function. The output  of  the 

longi tudinal  system is shown at the right end of  

the figure. 

In the c losed- loop  flight test, a pitch input was 

used as reference and an elevator was used to 

fol low the pitch command while the thrott le was 

fixed to t r im-throt t le .  Flight data were obtained 

over a wide speed range. Longi tudinal  c losed-  

loop flight tests were perfbrmed at the alt i tude of  

2000 m at l ow/h igh  airspeeds as shown in Table  

3. 

Figure  3 shows one of  the test events in Table  

3. As shown in the figure, the air vehicle trims 

near 140 kph and shows the ensuing maneuver  

after the pitch command of  + 5  degrees is applied. 

An offset effect by the aircraft configurat ion,  a 

pitch response in compar ison with the command,  

the corresponding elevator deflection and reduc- 

tion of  airspeed were detailed in Fig. 3. Ai leron 
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T a b l e  3 Closed-loo flight test results 

Trim I 
ALT IAS Weight 

No Throttle 
(m) (kph) (%) (Kg) 

1 2004 122.0 55.10 261.78 

2 2000 128.2 60.10 261.59 

3 1985 142.0 74.00 261.27 

4 1992 146.2 70.40 260.87 

Roll is regulated by autopilot 

T a b l e  4 Flight test summary (lateral/directional 
modes) 

Trim 
ALT IAS Weight 

No Throttle 
(m) (kph) (%) (Kg) 

1 913 131.0 52.4 273.4 

2 910 131.2 53.7 273.1 

3 911 130.7 53.1 272.8 

4 912 131.3 52.6 272.4 

5 914 131.6 52.5 272.1 

6 896 160.7 66.3 270.9 

7 890 162.0 69.3 270.4 

8 894 161.2 67.1 269.9 

895 162.3 65.9 269.2 

10 895 160.0 65.6 i 268.7 

Pitch is regulated by autopilot 
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Fig. 3 Closed-loop flight test data 
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and rudder were used to excite the la teral /di rec-  

t ional modes, while the thrott le was set to t r im-  

throttle. 

The longi tudinal  mode was regulated by the 
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autopi lot  as well. A multistep excitation was de- 

signed and applied automatical ly  by a prepro- 

gram. Stable flight data were obtained for 5 bi- 

direct ional  test events at both low-speed and 

high-speed levels. Fl ight  tests were performed at 

the alti tude of  around 900 m at l ow/h igh  air- 

speeds, which are summarized in Table  4. 

3. System Identification 

This section deals with the system identifica- 

tion of  the air vehicle from the flight data. There 

have been a lot of  literatures on system identific- 

ation of  flight vehicles, however,  these can be 

divided into two categories : (i) M L E  (Maximum 

Likel ihood Estimation) and (ii) nonl inear  esti- 

mation via E K F  (Extended Kalman Fil ter) .  The 

former has been studied extensively by l l i ff  and 

Maine with a lot of  flight data (Iliff, 1989; l l i f f  

and Maine, 1984). They have studied the subject 

for decades, and their study results can be used 

effectively in the aerodynamic  parameter  estima- 

tion. The M L E  scheme is based on maximizing 

the l ikel ihood function. Consider  a dynamic sys- 

tem described by a differential equat ion with ini- 

tial condi t ions  : 

, ¢ ( t ) = f [ x ( t ) ,  u ( t ) ,  ~]+F(~e)  n ( t )  (1) 

z ( t ~ ) = g [ x ( t i ) ,  u ( t , ) ,  ~] + G ( ~ ) ; ; ~  (2) 

x(t0) =xo (3) 

where the discrete time output  z(t i)  can be ob- 

tained at t ime t;, as a function of  state vector 

x(t,.), control  input u ( t i ) ,  and unknown aero- 

dynamic parameter  e in addit ion to the measure- 

ment noise. The cost function can be expressed as 

follows : 

1 ~ ] (~) =T~[zi t , )  -~(t~)] *GG*-'[z (t,.) -~.(t,) ] 
(4) 

+½Nln I(GG*)I 
where 2(t~) is the predicted response estimate of  

the states at t ime t~, also as a function of  unknown 

parameter e. Fig. 4 shows the system identific- 

ation flow using the M L E  scheme• 

The method also provides the relative measure 

of  accuracy of  the estimated parameters called 
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Fig. 5 Performance index variation vis a vis Z~ and 

Z~, 

C r a m e r - R a o  bound,  which is the square root of  

the corresponding diagonal  element of  the in- 

formation matrix (also known as Hessian).  The 

Hessian matrix can be substituted by a Gauss-  

Newton  approximat ion  in order  to improve the 

convergence and efficiency as fo l lows:  

N 

H($)  =~[V~2~(ti)]*GG*-l[V,2~(h)] (5) 

Fig. 5 shows the performance index with re- 

spect to two dimensional  aerodynamic  parameters 

z~ and zs, based on the dynamic equat ion : 

z~u(t) +z~a(t) +q( t )=z~,Sz  (t)  (6) 

where z~ means dimensional  stability derivatives 

with respect to i - th  states, and u( t ) ,  a( t ) ,  q(t)  
and SE(t)  denote forward airspeed, angle of  at- 

tack, pitch rate, and elevator deflection, respec- 

tively. Parameters P4 and P0 in Fig. 5 mean za and 

z~,, respectively. We can see that the performance 

index is almost the same on a wide range of  

zs,. This  sometimes makes the parameters move 

across the zero- l ine  and converge on a number  
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that violates the physical meaning. Therefore,  we 

should assign certain bounds on the aerodynamic 

parameters to be estimated before applying the 

M L E  algorithm. That  is often why many M L E /  

M M L E  est imation applicat ions limit the number  

of  parameters to be sought (Kim et al., 1997 ; Lee 

and Lee, 1998). 

The other method has been applied to the 

parameter est imation of  the aircraft, especially for 

the guided missile systems (Gelb, 1974; Speyer 

and Crues, 1987 ; Song et al., 1995). The method 

was based on a relatively simple idea and is an 

extension of  the l inearizat ion of  the convent ional  

Kalman filter to nonl inear  problems. In this me- 

thod, the states should also be estimated as a 

function of  the selected parameters. Besides, the 

aerodynamic  parameters themselves are the ones 

to be estimated. The E K F  algori thms are shown 

in Fig. 6. Al though it can be directly used to the 

est imation of  the aerodynamic  parameters, the 

method is very sensitive to the initial estimates, 

and in some cases, a discrepancy in initial guess 

may lead to divergence of  the estimation, which is 

the case for this research. 

In this research, a constrained parameter  opti- 

mizat ion scheme was used to extract the system 

model  based on sequential  quadrat ic  program- 

ming. The  opt imizat ion scheme consists of  two 

stages : (i) to select a specific performance index, 

and (ii) to find the parameters set that minimizes  

or maximize the performance index. The  scheme 

is in a sense similar to the analog matching me- 

thod. However ,  h igh-per formance  computer  sys- 

tems and effective search /op t imiza t ion  algori thm 

substitute the hard working of  wel l - t ra ined para- 

meter tuning engineers. Moreover ,  the scheme can 
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be applied to the case where the aerodynamic 

parameters have constraints, which was impossi- 

ble in the earlier stage. The optimization proce- 

dure assumes deterministic environment. So the 

flight test data should be of good quality. In addi- 

tion the following conditions are prerequisites for 

successful identification. 

1. High-performance flight sensors and actuators 

2. High-performance flight data acquisition sys- 

tem 

3. As many measurements as the number of state 

variables 

4. Reproducible tests at the calm air 

5. Consistency of measured flight data 

The extracted flight data were preprocessed to 

filter the measurement noise that undermines the 

dynamics of the UAV. A second order butter- 

worth filter with a cut-off frequency of 2.5 Hz was 

used. It is over 5 times the natural frequencies of 

the short period and dutch-roll mode and it can 

reject the effect of measurement noise while ac- 

commodating both longitudinal and lateral/direc- 

tional modes. Furthermore, a zero-phase filter 

was adopted to preclude the effect of phase delay 

that generally occurs in on-l ine filtering. Fig. 7 

shows the flight data before/after filtering. Zero- 

phase filtering cannot be applied on-line, but off- 

line for the research using the post-flight data 

Before Filtering After Filtering 
4 , 4 • 

-2 -2 0 20 

0.2 

, _ ~ - - 0 " 1 ~ 0  

~" -0.1 
-0.2 

0 2o 40 
time [sec] 

0.2 

0 , 1 ~ 0  

-0.1 
-0.2 0 20 40 

time [sec] 

Fig. 7 Flight test data before/after filtering 
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analysis. Pitch angle history of the vehicle does 

not show any difference because it is already 

filtered via INU. 

Linear equations of motion of the aircraft sys- 

tem can be expressed as a function of the aero- 

dynamic parameters that are being identified: 

these are shown in the Appendix. General esti- 

mation theory distinguishes the parameter esti- 

mation from system variable estimation and two 

different schemes can be applied for system iden- 

tification. In the case of aircraft system identific- 

ation, it would be more efficient to identify via 

aerodynamic parameters that are almost irrele- 

vant to speed range. In this research, a linear 

system was derived as a function of the aero- 

dynamic coefficients and the aerodynamic para- 

meters that minimize the error between the esti- 

mated system and the real flight data were identi- 

fied. The performance index was chosen as the 

weighted error energy between the flight data and 

numerical responses of the air vehicle when the 

identical control surface deflection was applied : 

4 

J = ~ K i J i  (7) 

J,'=l[ Y--.Vest I10 

= f t [  Q( t) Ly(t) - ye s t  (t) ]2] dt  
(8) 

where Ji, Q, y and Yest represent performance 

indices, their weights, flight data at each test event 

and responses of the state variables for the linear 

system model derived from the aerodynamic co- 

efficients. Performance indices for longitudinal 

mode identification are composed of four (open- 

loop vs. closed loop, low-speed vs. high-speed) 

flight test data. Measurements in the open-loop 

flight test are forward speed (u) ,  angle of attack 

(a),  pitch rate (q), and pitch angle (0),  respec- 

tively while those in the closed-loop flight test 

are u, q and 0. Performance indices for lateral/ 

directional mode identification are composed of 

four (twice for open-loop, low-speed vs. high- 

speed) flight test data. Measurements are sideslip 

angle (/3), roll rate (p), yaw rate ( r ) ,  roll angle 

(~), and yaw angle (l k), respectively. 

When the performance indices are assigned, 

all the maneuver modes should be balanced. As 
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for dynamic response of the longitudinal mode, 

short-period mode exhibits well-damped high 

frequency motion while the phugoid mode shows 

slow motion with very low damping. Therefore, 

short period motion vanishes in one or two 

periods after the 3-2-1-1 input is applied and the 

phugoid mode dominates for the rest of the re- 

sponse. Based on this observation, the following 

weighting function is chosen so that both short- 

period and phugoid mode can be considered with 

the equal proportion:  

Q(t)  = e - a ~ +  1 (9) 

where the effect of phugoid mode can be con- 

trolled via the parameter a. A candidate of a----0.1 

was used in the research. Side constraints were 

imposed on the aerodynamic coefficients. Static 

coefficients and others are divided into two gro- 

ups since the static aerodynamic coefficients are 

accurate enough from flight tests. While the static 

coefficients have variations within 10% of their 

initial values, the others may vary from 10% to 

300% of their initial values. Therefore the selected 

parameters could be optimized to have consis- 

tency with the flight data while maintaining the 

physical concepts. The following equality con- 

straints were applied for control derivatives : 

C m,, - It CL,, ( 11 ) 
c 

0 ss-- KoG(s) s=o (13) 
Oc l - K o G ( s )  

where 0c, Ko and G (s) represent pitch command, 

pitch gain, and open-loop transfer function of 

0 8E  respectively. Open-loop steady state of for- 

ward speed can be obtained using the relation- 

ship between the closed-loop pitch command and 

tbrward speed : 

~E s s = ~ s s "  l - K o G ( s )  s=o (14) 
Ko 

Identification results are obtained via an inte- 

grated optimization algorithm which blends flight 

test data and performance indices given by Eqs. 

(7)-(9) with equality constraints shown in Eqs. 

(10) (14) and side constraints for aerodynamic 

parameters. 

4. System Identification Results  

A consequence of the system identification pro- 

cedure and its results are shown in this section. 

First, the performance indices [Eqs. (7)- (8)]  

are constructed from the flight test data and the 

system response. Weights for each performance 

index are given by 

Ct ,  : z p  Cy, (11) 
' b ' 

Cn,,= - lp cos a+zp  sin a Cy,, (12) 
b 

where c, It, b, zt, and lp represent mean aero- 

dynamic chord (MAC), horizontal distance be- 

tween the CG and the aerodynamic center (AC) 

of the horizontal tail, wing span, vertical distance 

between the AC of the vertical tail and the 

fuselage center line and horizontal distance be- 

tween CG and AC of vertical tail, respectively. In 

the identification process, other equality constr- 

aints were imposed on the steady state response of 

the pitch loop flight test. Steady state of the air 

vehicle is given by 
Fig. 8 Flight test data compared with DATCOM 

modeling (longitudinal) 
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K=[l  0. l 0.5 0.53 (15) 

In addition, closed-loop steady state response 

and side constraints for each parameter are in- 

cluded in the optimization algorithm. A mathe- 

matical model based on Stability and Control 

DATCOM was used as an initial guess. Fig. 8 

shows the system response using the initial design 

values. Some discrepancy in phugoid mode is 

shown in the figure. Tables 5-6 list the estima- 

tion of the aerodynamic parameters and dynamic 

characteristics of the longitudinal motion. Also, 

an identified linear dynamic modeling is shown in 

Appendix. 

Figures 9-12 show comparative results for the 

flight test data and numerical simulations using 

the estimated system dynamics. The sum of Cm, 

and Cm~ in Table 5 determines the short-period 

damping, which shows some increase while there 

is no significant variation in short-period natural 

frequency depending on Cmo. The parameters Cm~ 
and Cm~ can be estimated indepen dently from 

(i) the geometric relationship between CL,~ and 

C .... and (ii) a priori knowledge of Cmo because 

the static parameters can be obtained accurately 

from ground tests and/or  analysis. 

Table 5 System identification results (longitu- 
dinal) 

Initial Identified 
N o Parameters 

Values Results 

1 --0.4378 --0.4095 Cm° 

2 6.0593 0.3030 CL~ 

3 --13.6635 --23.3433 Cmq 

4 1.5797 4.7391 CL~ 

5 --4.9298 --0.2465 Cm~ 

6 0.3841 0.2448 CLuE 

7 --1.2389 --0.7896 Cm,~ 

8 0.0546 

0.0375 

0.0582 CDo 

9 0.0338 CD~ 

10 0.0021 0.0023 (2",, 

11 5.4939 4.9445 CLo 

Table 6 Dynamic characteristics (low speed, 1000 
m) 

Frequency 
Eigenvalue Damping (rad/s) 

-3.57e--002 + 
1.25e--001 2.86e--001 

2.84e--001 i 

--3.57e--002-- 
1.25e--001 2.86e--001 

2.84e--001i 

--2.32e+000-- 
7.41e--001 3.14e--l- 000 

2.1 le+000i 

--2.32e+000+ 
7.41e--001 3.14e+000 

2.1 I e +000i 
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Fig. 9 

Fig. 10 

Longitudinal identification results (open- 
loop, low speed) 

Longitudinal identification results (open- 
loop, high speed) 
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Fig. 11 

Table 7 System identification results (lateral/ 
directional) 

Longitudinal identification results 
(closed-loop, low speed) 

Initial values Identified results 
No Parameters 

low high low high 
speed speed speed speed 

--0.5423 --0.9931 

--0.02961--0.0391 --0.0047 I--0.0180 

0.1150 0.0750 

--0.0944 --0.1090 --0.0096 --0.3270 I 

--0.5137 --0.5122 --0.3868 --0.4154 

--0.0945 --0.0635 --0.0763 --0.0518 

0.2843 0.6231 

0.2033 0.1520] 0.1207 0.1267 

--0.1225 --0.11511 --0.1006 --0.1136 

0.2050 0.1603 

2 Cz, 

3 Cn, 
4 Cy~ 

5 Cz, 

6 C,, 

7 Cy. 
8 Ct. 
9 Cn. 
10 Ct.A 
i1 -0.02121-0.0,511-0.00,51-0.0021 c 
12 O. 1139 0.0976 Cy,, 

13 0.0050 0.0043 C~,~ 

14 --0.0422 --0.0363 Cn,,~ 

Table 8 Dynamic characteristics (low speed, 1000 
m) 

Frequency 
Eigenvalue Damping (rad/s) 

--5.79e--001 + 
2.38e--001 2.43e+000 

2.36e+000i 

--5.79e--001 -- 
2.38e--001 2.43e+000 

2.36e + 000i 

--5.75e+000 1.00e+000 5.75e+000 

7.36e--002 -- 1.00e +000 7.36e--002 

Fig. 12 Longitudinal identification results 
(closed-loop, high speed) 

Besides, initial design results show higher 

phugoid mode frequency and lower damping than 

those for the flight tests. The results were reflected 

in Table 5, where the value of CLq was lowered to 

slow the long period motion and the increased 

drag also increased the long period damping. As 

shown in the figures, the identified aerodynamic 

parameters show close responses to those of the 

flight test data. 
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Initial values for lateral/directional identifica- 

tion were derived using DATCOM - a huge data- 

base where the stability and control derivatives 

can be derived for a variety of airfoils and wing- 

body-tail configurations (Hoak, 1972). Airspeed- 

dependent aerodynamic parameters were includ- 

ed. Figure 13 shows the system response based on 

the mathematical model. Yaw rate and sideslip 

show some discrepancy compared with the flight 

test data. Tables 7-8 show the identified para- 

meters and resulting dynamic characteristics of 

the lateral/directional mode. Also, Figures 14-15 

show the numerical results from the estimated 
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Fig. 13 Flight test datad compared with DAT- 
COM modeling (lateral/directional) 

Fig. 14 Lateral/directional identification results 
(low speed) 

dynamics compared with the flight test data. The 

value of Ct, is estimated to have a lower value 

than that of the mathematical model in Table 7. 

The sign of the eigenvalue of the spiral mode is 

determined by C l , C n , - C n , C l ,  and Ct, itself 
determines the spiral mode dynamics. Therefore, 

the identified result means that the time to double 

the amplitude, Tzs, for the spiral mode is less in 

flight tests than that of the mathematical model. 
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Fig. 15 Lateral/directional identification results 
(high speed) 

Lateral /direct ional  mode dynamics shown in Ta- 

ble 8 explains this. Natural frequency and dam- 

ping of the dutch-rol l  mode are quite acceptable. 

The time constant for the roll mode is kept very 

low, which indicates good lateral maneuvera- 

bility. Figures show that the estimated aerody- 

namic parameters comply well with the flight test 

results. Table 9 shows the level of flying quality 

of the developed UAV. Although the UAV will 

be operating on the autopilot basis, it is designed 

to guarantee the flight stability so that the exter- 

nal/ internal  pilots can control the air vehicle 

manually. Since the international regulation on 

the stability criteria for UAVs is not well defined, 

we evaluated the performance referring to the 

MIL-H-1797 for the aircraft class 1, flight phase 

category B, which is listed in Table 9. As shown 

in the table, the developed UAV satisfies flying 

quality level I lbr the longitudinal mode so that 

the external/internal pilot can recover the air 

vehicle manually even in the case of a severe 

malfunction in autopilot. Especially, the damping 

of the short period mode is very high, which 

reflects the high pitch damping in the configura- 

tion design stage. Dutch-rol l  and roll mode of the 

lateral/directional  motion satisfy the flying qual- 

ity level 1 while the spiral mode has level II 

stability. The UAV was designed to have a high- 
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Table 9 Stability level of the UAV 

Longitudinal 

Lateral 
Directional 

Test 
Flight Mode Level I Criteria Result Level 

Short 
period 

Phugoid 

( l )  ?l sp 

1.11 ~ 09n,p--< 6.86 
(n/a=14.76) 

S'p 

3.14 

.,Op ~ 0.04 

9st, 0.3--< g.sp ~ 2.0 0.74 1 

0.13 1 

con~>0.4 2.43 0)n~ 
Dutch- 

Roll S'a ~'a~0.08 0.24 I 

ogn,ge agn~a ~ 0.15 0.58 I 

Roll Z'r Z'r--< 1.4 sec 0.17 1 

Tz, > 20 sec T~, Spiral 9.42 

wing type, a long wingspan with a high aspect 

ratio to guarantee good spiral stability without 

dihedral. However, the flight test shows spiral 

stability is not good enough. The composite struc- 

ture of the wing is found rigid enough to resist 

upward deflection of the wing in flight. 

The evaluation of the flying quality may be of 

little importance in the sense that the developed 

UAV is controlled by autopilots in every flight 

phase and the closed-loop of both longitudinal 

and lateral/directional modes was designed to 

guarantee enough stability margins. However, 

the performance enhancement would be expected 

via redesign of autopilot gains based on accurate 

system identification. 

5. Conclusions 

There is no such identification scheme that 

meets all the flight test data, and one should apply 

the estimation method that can best fit to the 

aircraft considered. This is also quite true for 

UAVs. UAVs have an advantage in identification 

flight tests: an automatic flight control system 

with preprogrammed test modes without further 

risk increase than manned aircraft. The flight test 

engineer should take this advantage, and concur- 

rent system identification methods should be ap- 
plied in order to extract appropriate results. In 

this research, system identification for both lon- 

gitudinal and lateral/directional flight modes was 

performed using the flight test data. Several iden- 
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tification-oriented flight tests were carefully per- 

formed. We could estimate the dynamic response 

of the UAV in a broad range of operational 

envelope by deriving the equation of motion 

concurrent with each flight condition and by 

assigning the aerodynamic coefficients as para- 

meters to be identified. A constrained optimiza- 

tion scheme was adopted for identification : equa- 

lity/inequality constraints with side constraints 

were properly used for accurate results. Closed- 

loop flight tests were implemented to better the 

accuracy of the identification. As a result of the 

system identification, dynamic characteristics of 

the developed UAV were analyzed and the level 

of flying quality for each flight mode was in- 

vestigated. The developed UAV was proved to 

have good flight stability characteristics. The 

concurrent flight test method with the matched 

identification algorithm developed in this re- 

search can be used for many kinds of UAVs that 

have programmable test modes equipped with an 

automatic flight control system. 
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Appendix. Flight Dynamic Modeling 

1. Longitudinal Equation of Motion 

2 (t) =Azo.gX (t) +B,o.gU (t) (A.1) 

where, 

x(t) = [ u ( t )  

Along 

B tong = 

a(t) q(t) O(t) ] r, 

- X.=cos  ~T~+X~( Z~-sinuo_z~T~ ) 

Z~-sin ~ T~ 
Uo- Z~ 

M~=~vmr T~+ M~( Z~-sin ~T~Uo-Z~ ) 

o 

Ze~ 
- X e , + X a  U o - Z a  

Z~, 
Uo- Za 

Z~ 
ge~ + ga Uo- Za 

0 

u(t) =/~E(t) 

x,  + xs zo 
Uo- Zs 

z~ 
Uo- Zs 

Mo+Ma Z. Uo- Zs 
0 

Xq + x~ Uo + Zq 
Uo- Za 

Uo + Zq 
Uo- Z~ 

M , . Uo + Zq fi- IVI~ U~- Zk 

1 

_ ,. g s i n F o  
- g  cos ~ o - X a ~ 2 ~ -  

g sin Fo 
Uo- Za 

_ il~ g sin _F'o 

0 

2. Lateral/Directional Equation of Motion 

it(t) =A,atx(t) + B,atu(t) (A.2) 

where. 

x(t) = [ ~ ( t )  

Alat 

p(t) r(t) O(t) O(t) ]  r, u(t)=[&(t) 8R(t)] ~ 

Uoo Y' ffooYP - - (1-~)  g Cos/'OUo 0 

Ixxhz ( L ,+~N,)  Ixxlzz ( L ,+~N, )  Ixxhz ( L ,+~N,)  0 0 
Ixxlu-Pxz Ixxlzz-P_,e Ixxlzz-& 

Ixxlzz (N,+~_~ L,) IxxAz ( N, +J[~L, ) Ixxhz ( Nr +J[~Lr ) 0 0 
Ixxlu-I~z Ixxlzz-I~z IxxIzz-I}z 

0 1 tan F 0 0 

l 0 0 
0 0 cos Fo 

Brat = 

Y~A r~ 
Uo Uo 

IxxIzz (L~.+ IixzNs.) IxxIzz (Ls,+ II_~Ns.) 
I~Izz- ~z I,:xI~- ~ 

Ixxlzz ( N,. +_~zzZz L , .  ) IxxIzz ( Ne. + ~ z  Le. ) 
I~Izz- IZ~ IxxI~- ~z 

0 0 
0 0 
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3. Identified Flight Dynamic Modeling 

Along 

0.0000 

0.0000 

B --/ -o.o912 
t° r~-- / - - l l .9923 

L 0.0000 

A lat 

B lat 

---0.0776 6.5416 0.0000 --9.8000 
--0.0106 --1.8686 0.9836 0.9836 

0.0056 --6.1595 --3.1345 0.0000 
0.0000 1.0000 0.0000 

---0.3419 --0.0003 --0.9811 
--0.7614 --5.8589 1.8224 

5.3382 --0.4955 --0.6234 
0.0000 ! .0000 0.0000 
0.0000 0.0000 1.0000 
0.0000 0.0336 ] 

27.6171 0.7158 / 
--0.0222 --2.5798 [ 

0.0000 0.0000 | 
0.0000 0.0000 J 

0.2691 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 

(A.3) 

(A.4) 

(A.5) 

(A.6) 
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